Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nutrients ; 15(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004199

RESUMO

The present study aims to test whether probiotics protect against experimental gingivitis incited by 14 days of oral hygiene neglect and/or subsequently support the restoration of oral homeostasis. Eighty systemically and orally healthy participants refrained from oral hygiene procedures for 14 days, followed by 14 days with regular oral hygiene procedures. Additionally, participants consumed either probiotics (n = 40) or placebo (n = 40) throughout the trial. At baseline, day 14, and day 28, supragingival plaque score and bleeding-on-probing percentage (BOP %) were registered, and supragingival plaque and saliva samples were collected. The supragingival microbiota was characterized using 16S sequencing, and saliva samples were analyzed for levels of pro-inflammatory cytokines and proteases. At day 28, the relative abundance of Lautropia (p = 0.014), Prevotella (p = 0.046), Fusobacterium (p = 0.033), and Selenomonas (p = 0.0078) genera were significantly higher in the placebo group compared to the probiotics group, while the relative abundance of Rothia (p = 0.047) species was associated with the probiotics group. Streptococcus sanguinis was associated with the probiotics group, while Campylobacter gracilis was associated with the placebo group. No difference was observed in salivary cytokines, albumin, or any enzyme activity. The present study suggests that probiotics support the resilience of the oral microbiota in the resolution period after gingivitis.


Assuntos
Gengivite , Microbiota , Probióticos , Humanos , Gengivite/terapia , Projetos de Pesquisa , Probióticos/uso terapêutico , Citocinas
2.
Nutrients ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004205

RESUMO

The aim was to test if probiotics counteract oral dysbiosis during 14 days of sugar stress and subsequently help restore oral homeostasis. Eighty healthy individuals received either probiotics (n = 40) or placebo lozenges (n = 40) for 28 days and rinsed with a 10% sucrose solution 6-8 times during the initial 14 days of the trial. Saliva and supragingival samples were collected at baseline, day 14, and day 28. Saliva samples were analyzed for levels of pro-inflammatory cytokines, albumin, and salivary enzyme activity. The supragingival microbiota was characterized according to the Human Oral Microbiome Database. After 14 days of sugar stress, the relative abundance of Porphyromonas species was significantly higher (p = 0.03) and remained significantly elevated at day 28 in the probiotic group compared to the placebo group (p = 0.004). At day 28, the relative abundance of Kingella species was significantly higher in the probiotic group (p = 0.03). Streptococcus gordinii and Neisseria elongata were associated with the probiotic group on day 28, while Streptococcus sobrinus was associated with the placebo group on day 14 and day 28. On day 28, the salivary albumin level was significantly lower in the probiotic group. The present study demonstrates a potential stabilizing effect on the supragingival microbiota mediated by consumption of probiotics during short-term sugar stress.


Assuntos
Microbiota , Probióticos , Humanos , Açúcares , Método Duplo-Cego , Albuminas/farmacologia
3.
J Oral Microbiol ; 15(1): 2189770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968295

RESUMO

Frequent intake of free sugars is a major risk factor for dental caries, but the immediate influence of sugar intake on the supragingival microbiota remains unknown. We aim to characterize the effect of 14 days of sugar rinsing on the supragingival microbiota. Forty orally and systemically healthy participants rinsed their mouth with a 10% sucrose solution, 6-8 times a day, for 14 days, followed by 14 days without sugar stress. Supragingival plaque samples were collected at baseline, and after 14, and 28 days. The supragingival microbiota was analyzed using 16S rDNA sequencing. Taxonomic classification was performed using the Human Oral Microbiome Database. After 14 days of sugar stress induced by the daily sugar rinses, a significant loss of α-diversity (p = 0.02) and a significant increase in the relative abundance of Actinomyces (6.5% to 9.6%, p = 0.006) and Corynebacterium (6.2% to 9.1%, p = 0.03) species were recorded. In addition, a significant decrease in Streptococcus (10.3% to 6.1%, p = 0.001) species was observed. Sugar-mediated changes returned to baseline conditions 14 days after the last sugar rinse. The present study shows that temporary sugar stress induces loss of diversity and compositional changes to the supragingival microbiota, which are reversible if oral care is maintained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...